- 1. Conditional statement
- 2. **M** Converse
- 3. Hypothesis
- 4. **G**Conclusion
- 5. ____Theorem
- 6. Postulate
- 7. Collinear
- 8. Reflexive Property
- 9. Substitution Property
- 10. A Ruler Postulate
- 11. Betweenness of points definition
- 12. Detweenness of Points Theorem
- 13. V Protractor Postulate

- 14. **F** Betweenness of rays definition
- 15. <u>R</u>Betweenness of Rays Theorem
- 16. D Midpoint
- 17. Name Angle bisector
- 18. Complementary angles
- 19. M Supplementary angles
- 20. Linear pair
- 21. ___Vertical angles
- 22. **B** Perpendicular lines
- 23. Congruent triangles
- 24. KIsosceles triangle
- 25. <u>K</u>Equilateral triangle
- 26. <u>C</u>Right triangle

The points on a line can be numbered so that positive number differences measure distance.

B. Two lines forming a right angle.

A triangle containing a 90° angle.

75. A point which divides a line segment into two equal segments.

Z. A statement that is assumed to be true without proof.

OA-OB-OC iff a<b<c or a>b>c.

G. For statement "If a, then b," the expression "b."

Any number is equal to itself.

Two triangles possessing a correspondence between their vertices such that all of their corresponding sides and angles are equal.

- The statement: "If a, then b."
- K. A triangle having at least two equal sides.
- A statement that is proved by reasoning deductively from already accepted statements.
- M. Angles whose sum is 180°.

M. A line which divides an angle into two equal angles.

Of A-B-C, then AB+BC=AC

P. For statement "If a, then b," the expression "a."

If a=b, then a can be replaced by b in any expression.

D. If OA-OB-OC, then∠AOB+∠BOC=∠|AOC.

8. Points contained within a single line.

Two angles such that the sides of one angle are opposite rays to the sides of the other.

A triangle with all sides equal.

The rays in a half-rotation can be numbered from 0 to 180 so that positive number differences measure angles.

- W. For statement "If a, then b," the statement: "If b, then a."
- Angles whose sum is 90°.
- $\underline{\hspace{1cm}}$ -B-C iff a<b<c or a>b>c.
- Two angles having a common side and their other sides are opposite rays.

1

Given: ∠BGU and ∠EGL are vertical angles; BG=GE; UG=GL.

Prove: BU=LE

Statements:

27. BG=GE, UG=GL

28. LBGUFLEGL are

29. ∠BGU=∠EGL

30. ABGH ZAEGL

31. BU=EL

Reasons:

vertical angles are equal

SAS Congruence

Corresponding parts of congruent

\(\Delta'\)'s are equal

Given: $\angle C = \angle O$;

 $\angle R$ and $\angle N$ are supplements of $\angle 1$; CR=ON.

Prove: ΔCRE≅ΔONT.

Statements:

34. ∠R+∠1=_

32. ∠C=∠O; CR=ON

37. ∠R=∠N

38. ΔCRE≅ΔΟΝΤ

Reasons:

Given

Supplementary angles sum to 180°

Supplementary angles sum to 180°

Given: $\angle T$ and $\angle 2$ are complements of $\angle 1$; TA=AU: TU=UB. Prove: AU=AB. Statements: Reasons: Giv 39. TA=AU; TU=UB Given 41. ∠T+<u></u> Complementary angles sum to 90° 42. ∠2+∠1=**90** Complementary angles sum to 90° 43. ∠T+∠1=∠2+∠1 44. **2**T = **2**2 Subtraction Corresponding parts of congruent triangles are equal.

Given: BP bisects ∠ABC; BX=BY;∠1 and ∠2 form a linear pair.

Prove: XY ⊥ BP.

Statements:

47. BX=BY 48. **28XZ = L P**

49. BP bisects ∠ABC

50. ∠CBP=∠ABP

51. ABXZ = ABYZ

53. ∠1 and ∠2 form a linear pair

54. XY ⊥ BP

Reasons:

Given

If two sides of a triangle are equal, the sides opposite them are equal.

parts of congrest D's are equal

1.	Point is defined to be betwe	en point	and point	on the same line
	if and only if $a < b < c$ or $a > b > c$			

- 2. The Betweenness of Points Theorem states that if A B C, then AC = AB + BC
- 3. Ray OB is defined to be between rays OA and OC if and only if a < b < c or c < b < a
- 4. The Ruler Postulate states that points on a line can be numbered so that positive number differences measure **distance**
- 5. A point is on the midpoint of a line segment if and only if it divides the line segment into

two equal parts

- 6. Two angles are a <u>linear pair</u> if and only if they have a common side and their other sides are opposite rays.
- 7. Two angles are <u>vertical angles</u> if and only if the sides of one angle are opposite rays to the sides of the other.
- 8. Two lines are <u>perpendicular</u> if and only if they form a right angle.
- Two triangles are _____congruent ____ if and only if there is a correspondence between their vertices such that all of their corresponding sides and angles are equal.

Given the following definition, fill in the missing parts of the <u>direct proof</u> of the theorem. <u>Def</u>: Two angles are <u>supplementary</u> if and only if their sum is 180°.

Theorem: Supplements of the same angle are equal.

i.e., if $\angle 1$ is a supplement of $\angle 3$ and $\angle 2$ is a supplement of $\angle 3$, then $\angle 1 = \angle 2$.

Proof:

Statements

Reasons

10. $\angle 1$ and $\angle 2$ are supplements of $\angle 3$

Given

11.
$$\angle 1 + \angle 3 = 180^{\circ}$$
 and $\angle 2 + \angle 3 = 180^{\circ}$

Definition of supplementary angles.

12.
$$\angle 1 + \angle 3 = 42 + 43$$

Substitution.

Subtraction