3.1 - Number Operations and Equality

Algebraic Postulates of Equality:

Reflexive Property: a=a (Any number is equal to itself.)

Substitution Property: If a=b, then a can be substituted for b in any expression.

Addition Property: If a=b, then a+c=b+c

Subtraction Property: If a=b, then a-c=b-c.

Multiplication Property: If a=b, then ac=bc.

Division Property: If a=b, then a/c=b/c.

State the property of equality illustrated by each statement:

3. If $c/d=\pi$, then $c=\pi d$

multiplication Property of equality

4. If $\angle A + \angle B + \angle C = 180^{\circ}$ and $\angle C = \angle A + \angle B$, then $\angle C + \angle C = 180^{\circ}$.

Substitution Property of Equality 5. If $2\angle C=180^{\circ}$, then $\angle C=90^{\circ}$.

Division Property of Equality

This figure shows two lines intersecting to form several angles, three of which

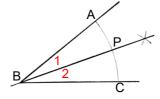
are numbered.

8. If $\angle 1 + \angle 2 = \angle 2 + \angle 3$, then $\angle 1 = \angle 3$. Why?

Subtraction Property of Equality (by L2) 9. If $\angle 1 = \angle 2$ and $\angle 2 = \angle 3$, then $\angle 1 = \angle 3$. Why?

Substitution Property of Equality

This figure shows how we bisected an angle by using a straightedge and compass. Let's check the algebra to see that ∠1 is the size that we would expect.



11. If $\angle ABC = \angle 1 + \angle 2$ and $\angle 1 = \angle 2$, then $\angle ABC = \angle 1 + \angle 1 = 2\angle 1$. Why?

Substitution Property of Equality

12. If $\angle ABC=2\angle 1$, then $\angle 1=(1/2)\angle ABC$. Why?

Multiplication by /2

Quadratic formula

If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

37. What is the hypothesis of this theorem?

$$ax^2+bx+c=0$$

Name the postulate that is the reason for each of the following first three steps in its proof:

38. If
$$ax^2 + bx + c = 0$$
, then $x^2 + \frac{b}{a}x + \frac{c}{a} = 0$.

Division Property of Equality (by a)

39. If $x^2 + \frac{b}{a}x + \frac{c}{a} = 0$, then $x^2 + \frac{b}{a}x = -\frac{c}{a}$.

Subtraction Property of Equality (by a)

40. If $x^2 + \frac{b}{a}x = -\frac{c}{a}$, then $x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} + \left(\frac{b}{2a}\right)^2$.

Addition Property of Equality (by $\left(\frac{b}{2a}\right)^2$)

41. What kind of proof begins like this?

Direct (Syllogism)

3.2 - The Ruler and Distance

distance between a & b is |a-b| = |b-a|

Postulate 3: The Ruler Postulate – The points on a line can be numbered so that positive number differences measure distance.

Def: Betweenness of Points – A point is between two other points on the same line iff its coordinate is between their coordinates.

(More briefly, A-B-C iff a<b<c or a>b>c.)

a-b and b-c

Theorem 1: The Betweenness of Points Theorem

If A-B-C, then AB+BC=AC

Proof for a < b < c case:

Stat	ements:	Reasons:
TG	A-B-C	The hypothesis.
'G	a <b<c< th=""><th>Definition of betweenness.</th></b<c<>	Definition of betweenness.
3.5 И.	AB=b-a and BC=c-b AB+BC=b-a+BC AB+BC=(b-a)+(c-b)=c-a	Ruler Postulate. Addition Addition (and simplifaction). Substitution
иG	AC=c-a	Ruler Postulate.
G	AB+BC=AC	Substitution (steps 4 and 5).

Three points on a line have the following coordinates:

point A, 123; point T, 1; and point W, 12.

Which idea is the reason for each statement below (Ruler Postulate, definition of betweenness of points, or Betweenness of Points Theorem)?

4. T-W-A because 1<12<123.

Definition of betweenness of points

5. TW+WA=TA because T-W-A.

Betweenness of points Theorem

Suppose point A is at coordinate 40, point B is at coordinate 47, distance BC is 5, and point D is at coordinate 58. Determine:

TG The total distance AD.

'G The coordinate of C.

$$47+5 = 52$$

.G The distance CD.

40 47 52 58

Because A-B-C, AB+BC=AC, or 7+5=12, according to the Betweenness of Points Theorem. Use this theorem to complete the statements:

'G 10. Because A-B-D, AB+
$$BD=AD$$
, or 7+ $II = I8$.

G 11. Because A-C-D, AC+
$$CD = AD$$
, or $12 + 6 = 18$.

Suppose AC=BD. Complete the statements:

A B C D

38. Because A-B-C, AC=**AB** +**BC**

by the Betweenness of Points Theorem

39. Because B-C-D, BD= **BC+CD**

by the Betweenness of Points Theorem

40. Why is AB+BC=BC+CD?

Substitution (AC=BD given subst. into 38439)

41. Why is AB=CD?

Subtraction Property of Equality (by BC)

3.3 - The Protractor and Angle Measure

<u>Postulate 4: The Protractor Postulate</u> – The rays in a half-rotation can be numbered from 0 to 180 so that positive number differences measure angles.

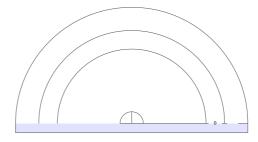
Definitions: An angle is

Acute iff it is less than 90°.

Right iff it is 90°.

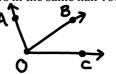
Obtuse iff it is more than 90° but less than 180°.

Straight iff it is 180°.



<u>Def: Betweenness of Rays</u> – A ray is between two others in the same half-rotation

iff its coordinate is between their coordinates. (More briefly, OA-OB-OC iff a
b<c or a>b>c.)



Theorem 2: The Betweenness of Rays Theorem -

If OA-OB-OC, then \angle AOB+ \angle BOC= \angle AOC.

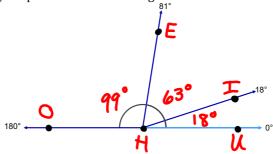
<u>Proof</u> for a>b>c case:

State	ements:	Reasons:
TG	OA-OB-OC	The hypothesis.
'G	a>b>c	Definition of betweenness.
,G	∠AOB=a-b and ∠BOC=b-c	Protractor Postulate.
ИG	$\angle AOB+\angle BOC=(a-b)+(b-c)=a-c$	Addition (and simplification).
иG	∠AOC=a-c	Protractor Postulate.
G	∠AOB+∠BOC=∠AOC	Substitution (steps 4 and 5).

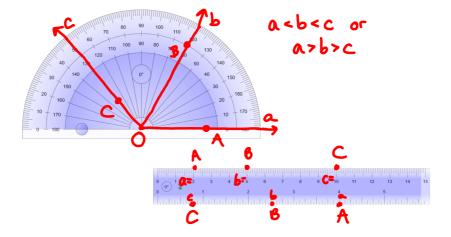
Three rays in a half-rotation have the following coordinates: ray HE, 81; ray HI, 18; and ray HO, 180.

4. Which ray is between the other two (and why)?

Use your protractor to draw a figure.



 $5.\ Name$ and find the measures of the three angles formed by the rays.



3.4 - Bisection

Def: A point is on the <u>midpoint of a line segment</u> iff it divides the line segment into two equal segments.

Def: A line <u>bisects an angle</u> iff it divides the angle into two equal angles.

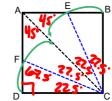
Def: Two objects are <u>congruent</u> if and only if they coincide exactly when superimposed.

Def: A <u>corollary</u> is a theorem that can be easily proved as a consequence of a postulate or another theorem.

Corollary to the Ruler Postulate: A line segment has exactly one midpoint.

Corollary to the Protractor Postulate: An angle has exactly one ray that bisects it.

Bisecting angles with origami: Starting with a square sheet of paper, corner B is folded onto D. Then sides BC and DC are folded onto the fold AC.



Because \angle BAC fits onto \angle DAC, \angle BAC and \angle DAC are congruent.

17. Which angle is bisected if ∠BAC=∠DAC?

18. Name three more angles that are bisected in the folding process.

Angle BCD is a right angle because the process starts with a square. Find the number of degrees in each of the following angles.

Acetylene molecules contain four atoms, arranged linearly.

34. In this molecule, AB=CD, A-B-C and B-C-D. Use these facts to supply the reasons in the following direct proof that AC=BD.

Proof:

Statements	Reasons
AB=CD	Given.
2AB+BC=BC+CD	Addition (by BC)
3A-B-C and B-C-D	Charles
AB+BC=AC and BC+CD=BD	Betweenness of Points The Gren
5. Therefore, AC=BD	Betweenness of Points The Gren Substitution (#4 into #2)

35. Use the additional fact that AC>2AB to supply the missing statements and reasons in this indirect proof that B is not the midpoint of AC.

Proof:

Statements

Reasons

Suppose B is the midpoint of AC Assumption

If B is the midpoint of AC, then AB=BC.

Def. of midpoint = midpoint Substitution (BC for

This contradicts that AC>2AB Therefore, our assumption is false and

Because AB+BC=AC, 2AB=AC.

Hypothesis

B is not the midpoint of AC.

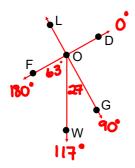
3.5 - Complementary and Supplementary Angles

Def: Two angles are **complementary** iff their sum is 90°.

Def: Two angles are <u>supplementary</u> iff their sum is 180°.

Theorem 3: Complements of the same angle are equal. (proved on p.106)

Theorem 4: Supplements of the same angle are equal.



If a protractor is placed on the figure so that OD has coordinate 0, the coordinates of the other rays are: OG, 90; OW, 117; OF, 180.

16. Write the equation that follows from the fact that OD-OW-OF. **LDOW + LWOF = LDOF**

(Betweenness of Rays Theoren)

17. Find the measures of ∠DOW = 117°

∠WOF **= 63**°

∠DOF = (80°

18. What relation does ∠DOW have to ∠WOF?

they are supplementary 2's

19. Find the measure of \angle WOG

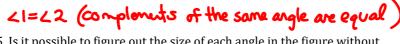
27

20. What relation does ∠WOG have to ∠WOF?

they are complementary angles

In the figure, $\angle 1$ and $\angle 2$ are both complements of $\angle AOC$.

44. What else is true?

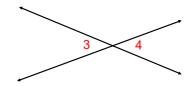


45. Is it possible to figure out the size of each angle in the figure without measuring them? $\angle 1+\angle 2=\angle AOC$ (Betweeness of Rays Theorem) $\angle 2+\angle 2=\angle AOC$ Substitution $\angle 2+\angle 2+\angle 2=\angle AOC+\angle 2$ Addition $\angle 2+\angle 2+\angle 2=\angle AOC+\angle 2$ Addition $\angle 2=90^{\circ}$ Substitution $\angle 2=90^{\circ}$ Substitution $\angle 1=30^{\circ}$ Substitution

3.6 - Linear Pairs and Vertical Angles

Def: Two angles are a <u>linear pair</u> iff they have a common side and their other sides are opposite rays.

Def: Two angles are <u>vertical angles</u> iff the sides of one angle are opposite rays to the sides of the other.



<u>Theorem 5</u>: The angles in a linear pair are supplementary.

Given: $\angle 1$ and $\angle 2$ are a linear pair.

Prove: $\angle 1$ and $\angle 2$ are supplementary.

Proof:

Statements

- 1. $\angle 1$ and $\angle 2$ are a linear pair.
- 2. Rays OA and OC are opposite rays.

3. Let the coordinates of OA, OB, and OC be 0, n, and 180.

4. $\angle 1$ =n-0=n° and $\angle 2$ =(180-n)° 4.5 $\angle 1$ + $\angle 2$ = n° + $\angle 2$ 5. $\angle 1$ + $\angle 2$ = n°+(180-n)°= 180°

6. $\angle 1$ and $\angle 2$ are supplementary.

0° K 1/2 180°

Reasons

Given

If two angles are a linear pair, they have a common side and their other sides are opposite rays. Definition of linear Pair

Protractor Postulate Printractor Postulate

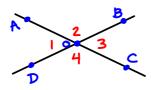
Addition LZ=180-n°

Two angles are supplementary if their sum is 180°.

<u>Theorem 6</u>: Vertical angles are equal.

Given: 41 and 23 are vertical angles.

To Prove: <1=23



<u>Proot</u> statements

1. 21 and 23 are vertical angles.

- 2. OA and OC are opposite Rays
 OB and OD are opposite Rays
- 3. 21 and 22 form a linear pair 22 and 23 form a linear pair
- 4. 41 and 42 are supplementary 42 and 43 are supplementary

5. 41=43

Reasons

Given

Def. of vertical angles

Definition of linear pair

Angles in a linear pair are supplementary

Supplements of the same angle are equal.

3.7 - Perpendicular and Parallel Lines

Def: Two lines are perpendicular iff they form a right angle.

<u>Theorem 7</u>: Perpendicular lines form four right angles.

Corollary to the definition of a right angle: All right angles are equal.

<u>Theorem 8</u>: If the angles in a linear pair are equal, then their sides are perpendicular.

Def: Two lines are <u>parallel</u> iff they lie in the same plane and do not intersect.