
- II. (8 points) <u>Translate</u> the verbal expression into a <u>variable expression in terms of a single variable</u>.
- 21. Five times the total of four less than twice a number and three more than the number.

 5 (2x-4 + x+3)
- II. (8 points) <u>Translate</u> the verbal expression into a <u>variable expression in terms of a single variable.</u>

- III. (10 points) Write a linear (single variable) equation to describe the word problem. Do not solve.
 - 22. 60 pounds of delicious Jamaican Blue Mountain coffee that costs \$32 per pound are mixed with 100 pounds of Fakin' Blue Discount Coffee. How much is the Fakin' Blue worth per pound if the coffee blend costs \$15

thing	mount	bong,	total	
JBM	60	32	60(32)	
FBD	100	×	100 x	
bierd	1160	15	160 (15)	
(60(32) + 100x = 160(15))				

- III. (10 points) Write a linear (single variable) <u>equation</u> to describe the word problem. <u>Do not solve</u>.
- 22. 60 pounds of delicious Jamaican Blue Mountain coffee are mixed with 100 pounds of Fakin' Blue Discount
 Coffee that costs \$3 per pound. How much is the Jamaican Blue Mountain coffee worth per pound if the

thing	s15 per pound?	prieper	total		
JBM	60	X	60 x		
FBD	100	3	100(3)		
blerd 60	160 0x +log (3	(5) = 160 (15)	160(15)		

Chapter 3 Homework:

3.1 - #3-29 odd

3.2 - #3-16 <u>all</u>, 21-43 odd, 49-87 odd

3.3 - #3-9 odd, 15-33 odd

3.4 - #3-19 odd, 29-41 odd

3.5 - #3-49 odd

ordered pairs, distance, midpoint of Tues day

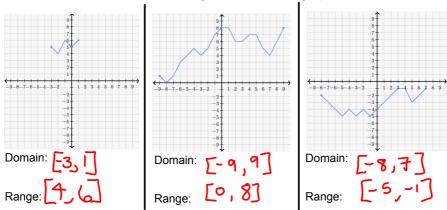
functions, domain, range

graph by plotti<mark>ng points, x-</mark> and y-intercepts

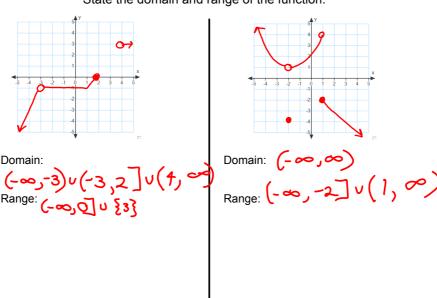
finding slope, graph using slope and y-intercept

finding equations of lines

abscissa is the x- or 1st coordinate ordinate is the y- or 2nd coordinate



(2,4



(X,3)

State the domain and range of the function graphed in blue.

State the domain and range of the function.

$$f(x) = \frac{\sqrt{x-3}}{x-5}$$
 What is the domain of f ?

$$x-5 \neq 0$$
 and
$$x-3 \geq 0$$

$$x \neq 5$$

$$x \neq 5$$

$$3 \quad 5$$

$$(3,5) \cup (5,\infty)$$

$$f(x) = \frac{x-5}{\sqrt{x-3}} \quad \text{what is the domain?}$$

$$x-3 \ge 0 \quad \text{and} \quad x-3 \ne 0$$

$$x-3 > 0$$

$$x>3$$

$$(3,\infty)$$

$$f(x) = \frac{\sqrt{5-x}}{(x+2)(x-6)}$$

$$5-x \ge 0 \text{ and } x+2 \ne 0 \text{ and } x-6 \ne 0$$

$$5 \ge x \xrightarrow{x \ge 5} x \ne -2 x \ne 6$$

$$x \le 5$$

$$(-\infty, -2) \lor (-2,5)^{-2} 5 6$$

$$f(x) = \frac{\sqrt{9-x}}{x\sqrt{x+3}}$$

$$9-x \ge 0 \text{ and } x+3>0 \text{ and } x \ne 0$$

$$-x \ge -9$$

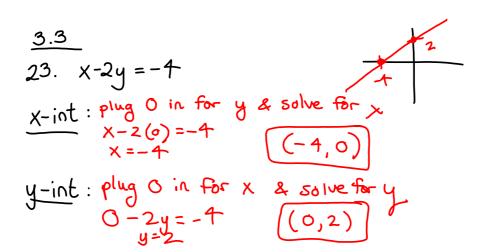
$$x \le 9$$

$$x \le 9$$

$$(-3,0) \circ (0,9]$$

Review:

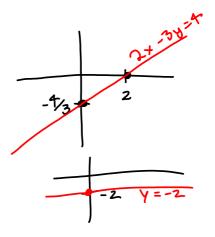
A <u>linear function</u> is a function of the form f(x) = mx + b or y = mx + b, where $m = \underline{slope} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$ and the point (0,b) is the <u>y-intercept</u>, or the point where the graph of the function intersects the y-axis. The y-intercept of any function is found by plugging 0 in for x (evaluating f(0)).

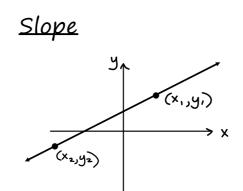

y=mx+b is called the slope-intercept form of the equation of a line.

Ax + By = C is the **standard form** of the equation of a line.

A <u>horizontal line</u> has an equation of the <u>form</u> y = b, where b is the y-coordinate of every point on the line. A horizontal line has a slope of 0.

A <u>vertical line</u> has an equation of the $\underline{\text{form }} x = a$, where a is the x-coordinate of every point on the line. A vertical line has no slope.


The $\underline{\textbf{x-intercept}}(\textbf{s})$ of any function are the point($\textbf{s} \ (x,0)$, found by substituting 0 in place of y in the equation (setting f(x)=0) and solving for x



32.
$$2x-3y=4$$

x-intercept: (2,0)

y-intercept: (0, -43)

18.
$$y=-2$$

 $x-intercept: none$
 $y-intercept: (0,-2)$

slope =
$$\frac{\text{change in } y}{\text{change in } x}$$

 $M = \frac{\Delta y}{\Delta x} = \frac{y^2 - y}{x^2 - x}$
 $= \frac{y_1 - y_2}{x_1 - x_2}$

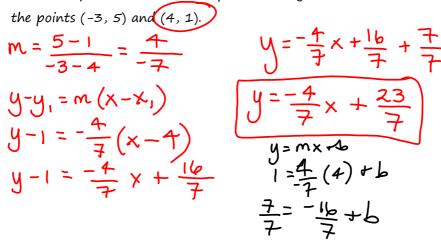
$$M = \frac{\Delta y}{\Delta x} = \frac{-4 - (-1)}{3 - (-7)} = \frac{-4 + 1}{3 + 7} = \boxed{\frac{-3}{10}}$$

Standard Form: Ax+By=C

A, B, C are real numbered constants

Slope-Intercept Form: y=mx+b

m, b are real numbered constants


m is the slope

b is the y-intercept value (the point (O,b) where the line crosses the y-axis)

Point-Slope Form: $y-y_1=m(x-x_1)$

 x_1 and y_1 are real numbers such that (x_1,y_1) is a point on the line m is the slope

Find the equation of a line that passes through

Parallel & Perpendicular Lines:

Two lines with slopes m_1 and m_2 are parallel if and only if $m_1 = m_2$ (and have different y-intercepts)

*All vertical lines are parallel.

Lill_2

Two lines with slopes m_1 and m_2 are perpendicular if and only if $m_1 = -\frac{1}{m_1}$ or $m_2 = -\frac{1}{m_1}$ or $m_1 = -\frac{1}{m_2}$ *Vertical lines are perpendicular to horizontal lines

Lill_3

Find the slope-intercept (y=mx+b) equation of the line:

$$y-7 = 2(x-3)$$

 $y-7 = 2x-6$
 $y = 2x+1$

In standard form
$$2x-y=-1$$

2. passes through (-5, 2) & (6, -1)

$$M = -1 - 2$$
 $6 - (-5) = -3$

$$y - (-1) = \frac{3}{11}(x - 6)$$

$$y + 1 = -\frac{3}{11}x + \frac{18}{11}$$

$$y = -\frac{3}{11}x + \frac{18}{11} - \frac{11}{11}$$

$$y = -\frac{3}{11} \times + \frac{7}{11}$$

3. Given the line y=4x+3, find the equation of a line parallel to this that passes through (4, 1).

$$m=4$$
; $(x,y,)=(4,1)$
 $y-y,=m(x-x,)$
 $y-1=4(x-4)$
 $y-1=4x-16$
 $y=4x-16+1$

4. Given the line y=-3x+7, find the equation of a line perpendicular to it that passes through (5,-8).