Radian Measure

The circumference of a circle of radius r is given by the equation:

Therefore, the unit circle, which has radius 1, has circumference:

The irrational number pi is approximately: $\pi \approx$

If we think about these numbers as corresponding to arc lengths around the unit circle, in which quadrant (or on which axis) do we end up?

What is a radian?

r = radius length

s = arc length

When s=r, we say that the corresponding angle θ which is subtended by arc s has measure 1 radian.

1 radian $\approx 57.3^{\circ}$

$$\pi = 180^{\circ}$$

$$2\pi = 360^{\circ}$$

Note that θ is independent of the radius length and any unit of measurement. Therefore radians have no associated units, and any angle measure without a degree symbol is assumed to be in radians.

Converting between radians and degrees

$$\pi = 180^{\circ}$$
 : $\frac{\pi}{180^{\circ}} = 1 = \frac{180^{\circ}}{\pi}$

Convert 225° to radians.

Convert
$$\frac{5\pi}{6}$$
 to degrees.

Convert 120° to radians.

$$120^{\circ} \cdot T = 2\pi$$
 $180^{\circ} = 3$

Convert $\frac{7\pi}{4}$ to degrees.

$$\frac{7\pi}{4} \cdot \frac{180^{\circ}}{\pi} = 315^{\circ}$$

Two angles in radians are:

complementary if they sum to $\frac{\pi}{2}$. or $\mathbf{70}^{\circ}$

supplementary if they sum to π . or 180°

coterminal if they differ by integer multiples of 2π . of 360°

Find the complement and supplement of $\frac{5\pi}{12}$.

C:
$$\frac{\pi}{2} - \frac{5\pi}{12} = \frac{6\pi}{12} - \frac{5\pi}{12} = \frac{\pi}{12}$$

complement of 1:

Arc Length & Angular Speed

Arc Length

r = radius or distance fromthe center of rotation (in, cm, km, etc.)

s =arc length or distance traveled along the circumference of a circle (in, cm, km, etc.)

 θ = angle or amount of rotation (deg,rad,revolutions,etc.)

$$s = r\theta$$

1.
$$r = 5in$$
; $\theta = 45^{\circ}$; $s = ?in$

$$5 = r\Theta = 5in \cdot 45^{\circ} \cdot \frac{\pi}{4} = \frac{5\pi}{4} \cdot n$$

2.
$$s = 16yards$$
; $\theta = 5$; $r = ?yards$

$$\frac{5}{6} = \frac{6}{6} = \frac{5}{6} = \frac{16}{5} = \frac{16}$$

3. Find the measure of a rotation in radians when a point 2 meters from the center of rotation travels 4 meters.

$$\Theta = \frac{2}{r} \text{ ad } ; r = 2m ; s = 4m$$

$$S = R \Theta \qquad \Theta = \frac{S}{r} = \frac{4m}{2m} = \frac{2}{2m}$$

Linear Speed

$$v = \frac{s}{t}$$

Angular Speed

$$\omega = \frac{\theta}{t}$$

Arc Length

$$s = r\theta$$

Relating Linear & Angular Speed

- $r = \underline{\text{radius}}$ or distance from the center of rotation (in, cm, km, etc.)
- s =arc length or linear distance along the circumference of a circle (in, cm, km, etc.)
- $\theta = \underline{\text{angle}}$ or amount of rotation (deg, rad, revolutions, etc.)

t = time

(sec, min, hours, years, etc.)

$$v = \frac{\text{linear distance}}{\text{time}} = \frac{\text{linear speed}}{\left(\frac{km}{s}, \frac{mi}{h}, etc.\right)}$$

$$\omega = \frac{\text{amount of rotation}}{\text{time}} = \underline{\text{angular speed}}$$
$$\left(\frac{rev}{min}, \frac{deg}{s}, etc.\right)$$

Handout Problems:

1. A wheel with a 15 inch diameter rotates at a rate of 6 radians per second. What is the linear speed of a point on its rim in feet per minute?

$$V = 15in$$
 $W = 6rad$ $V = ? ft/min$
 $V = rw = 15in \cdot 6rad \cdot 1ft \cdot 608$
 $V = 225 ft/min$

2. An earth satellite in circular orbit 1200 km high makes one complete revolution every 90 minutes. What is its linear speed in km/min, given that the earth's radius is 6400 km?

$$V = \Gamma \omega = \frac{1 \text{ rev}}{90 \text{ min}}$$

$$V = \frac{1 \text{ rev}}{90 \text{ min}}$$

$$V = \frac{1 \text{ rev}}{90 \text{ min}}$$

$$V = \frac{1620 \text{ Trev}}{90 \text{ min}}$$

$$V = \frac{1620 \text{ Trev}}{90 \text{ min}}$$

Homework due this Friday:

Already assigned:

• 5.1 #1, 2, 7-18 all

New:

- 5.1 #31-48 all
- 4 problems on handout
- 5.1 #55-74 all

Due next Wednesday, 11/13:

"Do you know enough Algebra..." take-home quiz