Review:

An industrial pulley has a 60 inch diameter, and moves a belt at a rate of 60 miles per hour. What is the angular speed of a point on the edge of the pulley?

Graphing Trigonometric Functions continued...

Goal: Transform a trigonometric function of the form y = f(x) to one of the form y = af(bx + c) + d by observing changes in amplitude and period, as well as horizontal and vertical shifts.

Recall:

- Constants that are multiplied (divided) result in a stretching/scaling of the graph (amplitude/period changes), that we show by changing the scale on our axes
- Constants that are added (subtracted) result in shifting of the graph
- Constants outside the function (a & d) affect it vertically, as we would expect
- Constants inside the function (b & c) affect it horizontally, opposite of what we
 would expect

Note:

When both b and c are present (i.e. when b is anything other than 1), the horizontal shift is not just $c=\frac{c}{1}$, as it is affected by the presence of b. In this case (and in general), the horizontal shift is $\frac{c}{b}$, which we can more easily see by factoring b out in the general equation: $y=af\left[b\left(x+\frac{c}{b}\right)\right]+d$

Summary:

For a Trigonometric function of the form $y = \frac{a}{b} \left[b \left(x + \frac{c}{b} \right) \right] + \frac{d}{b}$,

<u>Amplitude</u> = |a| (note that amplitude is always positive)

$$\frac{\text{Period}}{|\textbf{b}|} = \frac{\textit{original period of the function } (\pi \textit{ or } 2\pi)}{|\textbf{b}|}$$

$$\frac{\text{Horizontal shift}}{b} = \frac{c}{b}, \frac{\text{left if } \frac{c}{b} > 0}{\text{right if } \frac{c}{b} < 0} \quad \text{"phase shift"}$$

$$\frac{\text{Vertical shift}}{\text{down if } d < 0} = d , \frac{up \text{ if } d > 0}{down \text{ if } d < 0}$$

$$y = \sin x + \cos x$$

Homework #4 (due Fri, 9/5)

• Graphing worksheets, problems #1-60

	1	O	, I
•	<u>5.5</u>	#55-60 all	write an equation given a graph (sin & cos)
		#77-84 all	write an equation given amplitude and period
•	<u>5.6</u>	#49-54 all	write an equation given a graph (tan, cot, sec, csc)
		#63-70 all	write an equation given ("amplitude" 1 and) period
•	<u>5.7</u>	#53-58 all	graph sum functions
		#59-64 all	write an equation given a graph
		#87-92 all	write an equation given amplitude, period, & shifts