Homework last week (11/11):

- 01: Sign up for Khan Academy with coach code 4CG5S2.
- 02: Read sections 5.1 and 5.2 in your textbook
- 03: Textbook problems
- 5.1 #1, 2, 7-18 all, 31-73 odd
- 5.2: #1-6 all; 15-41 odd; 59-75 odd (NO CALCULATOR!)
 See syllabus for proper formatting of written homework assignments.

Homework for this week (11/18):

01: Read sections 5.3 and 5.4 in your textbook

02: Textbook problems -- DUE WEDNESDAY 11/16

- 5.3: #1-35 odd; 37-48 all (NO CALCULATOR!); 61-68 all (NO CALCULATOR!)
- 5.4: #13-22 all (NO CALCULATOR!)

Wednesday - HW due; bring practice problems Friday - class is cancelled

Test - Tues. 11/29

Graphs of the sine and cosine functions

Domain/Range/Period/Graphs of the other 4 Trig functions?

Function	Domain	Range	Period
$y = \sin x$	$(-\infty,\infty)$	[-1,1]	2π
$y = \cos x$	$(-\infty,\infty)$	[-1,1]	2π
$y = \csc x$	$\{x x \text{ is not an integer multiple of } \pi\}$	$(-\infty, -1] \cup [1, \infty)$	2π
$y = \sec x$	$\left\{x \mid x \text{ is not an odd multiple of } \frac{\pi}{2}\right\}$	$(-\infty, -1] \cup [1, \infty)$	2π
$y = \tan x$	$\left\{x \mid x \text{ is not an odd multiple of } \frac{\overline{\pi}}{2}\right\}$	$(-\infty,\infty)$	π
$y = \cot x$	$\{x x \text{ is not an integer multiple o}$	$f[\pi]$ $(-\infty,\infty)$	π

Why?
$$CSCX = \frac{1}{SINX}$$
 $tonX = \frac{SinX}{COSX}$
 $SECX = \frac{1}{COSX}$ $cotX = \frac{COSX}{SINX}$

