Homework grades this week:

- 01: Read sections 5.3 and 5.4 in your textbook (and 5.2 if you haven't already) by Monday 22 Aug.
- 02: Complete at least 45 minutes of exercises on **Khan Academy** related to sections 5.2, 5.3, and 5.4 **by Friday**, 26 Aug; in addition, complete "Mastery Challenges" as often as they become available to you.
- 03: Textbook problems, mostly be completed in class and due Friday, 26 Aug.
- 5.2: #1-6 all; 15-41 odd; 59-75 odd (NO CALCULATOR!)
- 5.3: #1-35 odd; 37-48 all (NO CALCULATOR!); 61-68 all (NO CALCULATOR!)
- 5.4: #13-22 all (NO CALCULATOR!)

Expect a **quiz** sometime this week on some combination of radians & degrees, arc length & angular speed, trigonometric functions, 30-60-90 & 45-45-90 triangles.

Khan Academy exercises for section 5.1:

arc measure

arc length

convert units (metrics)

radians & degrees

radians & arc length

convert units word problems (metrics)

convert units (US customary)

complementary & convert units word problems

convert units (US customary)

convert units word problems

(US customary)

Khan Academy exercises for section 5.2:

- Trigonometric ratios in right triangles
- Solve for a side in right triangles
- Solve for an angle in right triangles
- Right triangle word problems

Khan Academy exercises for section 5.3-5.4:

- Trig values of special angles
- Use the Pythagorean identity

5.3 - Trigonometric Functions of Any Angle

For an angle in standard position, the reference angle is the acute angle between the terminal side of the angle and the x-axis.

$$\sin\theta = \frac{y}{r}$$

$$\cos \theta = \frac{x}{r}$$

$$\tan \theta = \frac{y}{r}$$

* note that the hypotenuse r is always positive, so that the x- and y-coordinates determine whether the trig function is positive or negative

Tells us which functions are positive in which quadrants.

Find the 6 trigonometric function values of an angle whose terminal side passes through the given point.

$$\tan \alpha = -\frac{3}{7}$$

$$\cot \alpha = \frac{-4}{3}$$

$$csc\alpha = \frac{5}{3}$$

36. Given that
$$\cos \alpha = -\frac{4}{5}$$
 and $\alpha \in QII$, find the other 5 trigonometric function values of α . Triples
$$\cot \alpha = \frac{-4}{3}$$

$$\cot \alpha = \frac{-4}{3}$$

$$\csc \alpha = \frac{5}{3}$$

$$\cot \alpha = \frac{3}{5}$$

$$\cot \alpha = \frac{5}{3}$$

$$\cot \alpha = \frac{3}{5}$$

$$sind=\frac{3}{5}$$

The unit circle and function values of 30°, 45°, and 60° reference angles

$$(x-h)^2+(y-k)^2=\Gamma^2$$

Center: (h,k) ; radius: Γ

What about quadrantal angles?

An angle whose terminal side falls on an axis is called a quadrantal angle.

Reciprocal Identities

$$\csc x = \frac{1}{\sin x} , \quad \sin x = \frac{1}{\csc x}$$

$$\sec x = \frac{1}{\cos x} , \quad \cos x = \frac{1}{\sec x}$$

$$\cot x = \frac{1}{\tan x} , \quad \tan x = \frac{1}{\cot x}$$

Ratio Identities

$$\tan x = \frac{\sin x}{\cos x}$$
, $\cot x = \frac{\cos x}{\sin x}$

Common angles: (memorize!)

$$\frac{\pi}{6} = 30^{\circ}$$

$$\frac{\pi}{4} = 45^{\circ}$$

$$\frac{\pi}{3} = 60^{\circ}$$

Note:

$$\frac{\alpha\pi}{4} \rightarrow 30^{\circ} \, ref. \angle$$

$$\frac{k\pi}{4} \rightarrow 45^{\circ} \, ref. \angle$$

$$\frac{k\pi}{3} \to 60^{\circ}\,ref.\,\angle$$

$$\frac{k\pi}{2} \rightarrow 90^{\circ} \ or \ 270^{\circ}$$

$$k\pi \rightarrow 0^{\circ} for \ k \ even;$$

180° for k odd

Find the trig function value of the given angle (note that they all have either a 30°, 45°, or 60° reference angle OR are quadrantal angles).

Evaluate the trigonometric function of an angle given in radians

