Assignments for the week of Oct 24:

- 45 minutes of Khan Academy
- Textbook problems due Wed(2nd)/Thurs(1st)

7.3 #1-23 odd, 33,35 vector operations #45-51 odd dot product

Final Exams

1st period: Wed. 11/2 9am-11am 2nd period: Fri. 10/28 9am-11am

Bring your textbooks to class on the last day: Wed(2nd)/Thurs(1st) It will be up to you to turn them in to the library.

Resolving a vector into horizontal and vertical components

32. $|\vec{u}|=150$ lb, inclined upward to the right at 52° from the horizontal. Resolve \vec{u} into horizontal and vertical components.

The object on a ramp problem

40. If a 450 object is at rest on a ramp with a 30° incline, find the components of the force of the object's weight parallel and

perpendicular to the ramp.

$$\vec{V} = \text{perpendicular}$$
(normal)
 $\cos 30^{\circ} = \frac{|\vec{V}|}{450}$
 $|\vec{V}| = 450\cos 30^{\circ}$
 $= 450 \cdot \frac{3}{2}$
 $= 225\sqrt{3} \text{ Lb}$

Solve for x. (all solutions, no restrictions)

$$\sin 2x - \sin x = 0$$

$$2\sin x\cos x - 5\ln x = 0$$

$$S'inx = 0$$
, $2cosx - 1 = 0$
 $X = 0 + 2\pi k$ $2cosx = 1$
 $X = \pi + 2\pi k$ $cosx = \frac{1}{2}$
 $x = \pi + 2\pi k$ $x = \pi + 2\pi$

$$X = TT + 2\pi k$$
 $COSX = \frac{1}{2}$

$$X = \pi k$$
 X

Given
$$\vec{v} = \langle -1,6 \rangle$$
, $\vec{w} = \langle 6,-1 \rangle$

1. Find
$$2\vec{v} - 3\vec{w}$$
. $2 < -1,6 > -3 < 6,-1 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > -< 18, -3 > = < -2,12 > = < -2,12 > -< 18, -3 > = < -2,12 > = < -2,12 > -< 18, -3 > = <$

2. Find
$$|\vec{v}|$$
. $= \langle -20 \rangle \langle 5 \rangle$

3. Find
$$|\vec{w}|$$
. $\sqrt{(b)^2 + (-1)^2} = \sqrt{37}$

4. Find
$$\vec{v} \cdot \vec{w}$$
.

$$(-1)(6)+6(-1)=-12$$

6. Find a unit vector
$$\vec{u}$$
 in the same direction as \vec{v} .

$$\begin{array}{c}
-1 \\
\hline
37
\end{array}$$

$$\begin{array}{c}
-1 \\
\hline
37
\end{array}$$

Find a unit vector in the same direction as the given vector.

Determine the direction angle of the given vector.

$$\vec{u} = \langle -2, -5 \rangle$$

$$a = tan^{-1} \left| \frac{b}{a} \right|$$

$$= tan^{-1} \frac{5}{2}$$

$$= 68.2^{\circ}$$

$$= (80^{\circ} + 68.2^{\circ})$$

$$= (248.2^{\circ})$$

Evaluate the inverse functions. Give your answers in radians.

$$1. \csc^{-1}\left(-\frac{2}{\sqrt{3}}\right) = \sin\left(-\frac{\sqrt{3}}{2}\right) = \boxed{\frac{\pi}{3}}$$

$$2. \cot^{-1}\left(\frac{\sqrt{3}}{2}\right) = \boxed{\frac{\pi}{3}}$$

Evaluate.

$$1. \sin^{-1}\left(\sin\frac{\pi}{5}\right) > \frac{1}{5}$$

$$2. \tan^{-1}\left(\tan\frac{2\pi}{3}\right) = -\frac{\pi}{3}$$

Given that
$$\tan \frac{x}{2} = \frac{1 - \cos x}{\sin x}$$
, evaluate $\tan \frac{5\pi}{12}$.

$$\tan \frac{5\pi}{12} = \tan \frac{5\pi}{2} = \frac{1 - \cos \frac{5\pi}{6}}{5 \cdot n \cdot \frac{5\pi}{6}} = \frac{1 - \cos \frac{5\pi}{6}}{5 \cdot n \cdot \frac{5\pi}{6}} = \frac{1 - \cos \frac{5\pi}{6}}{2} = \frac{1 - \cos \frac{5$$

Prove.

$$\sin 3x = 3\sin x - 4\sin^3 x$$

LHS = $\sin 3x = \sin (2x + x) =$
= $\sin 2x \cos x + \cos 2x \sin x$
= $2\sin 2x \cos x + \cos 2x \sin x$
= $2\sin 2x \cos x + \cos 2x \sin x$
= $2\sin 2x \cos x + \cos 2x \sin x$
= $2\sin 2x \cos x + \cos 2x \sin x$
= $2\sin 2x \cos x + \cos 2x \sin x$
= $2\sin 2x \cos x + \cos 2x \sin x$
= $2\sin 2x \cos x + \cos 2x \sin x$
= $2\sin 2x \cos x + \cos 2x \sin x$
= $2\sin 2x \cos x + \cos 2x \sin x$
= $2\sin 2x \cos x + \cos 2x \sin x$
= $2\sin 2x \cos x + \cos 2x \sin x$
= $2\sin 2x \cos x + \cos 2x \sin x$
= $2\sin 2x \cos x + \cos 2x \sin x$
= $2\sin 2x \cos x + \cos 2x \sin x$
= $2\sin 2x \cos x + \cos 2x \sin x$
= $2\sin 2x \cos x + \sin 2x \cos x + \cos 2x \sin x$
= $2\sin 2x \cos x + \sin 2x \cos x + \cos 2x \sin x$
= $2\sin 2x \cos x + \sin 2x \cos x + \sin 2x \cos x$
= $2\sin 2x \cos x + \sin 2x \cos x + \sin 2x \cos x$
= $2\sin 2x \cos x + \sin 2x \cos x + \sin 2x \cos x$
= $2\sin 2x \cos x + \sin 2x \cos x + \sin 2x \cos x$
= $2\sin 2x \cos x + \sin 2x \cos x + \sin 2x \cos x$
= $2\sin 2x \cos x + \sin 2x \cos x + \sin 2x \cos x$
= $2\sin 2x \cos x + \sin 2x \cos x + \sin 2x \cos x$
= $2\sin 2x \cos x + \sin 2x \cos x + \sin 2x \cos x$
= $2\sin 2x \cos x + \sin 2x \cos x + \sin 2x \cos x$
= $2\sin 2x \cos x + \sin 2x \cos x + \sin 2x \cos x$
= $2\sin 2x \cos x + \sin 2x \cos x + \sin 2x \cos x$
= $2\sin 2x \cos x + \sin 2x \cos x + \sin 2x \cos x$
= $2\sin 2x \cos x + \sin 2x \cos x + \sin 2x \cos x$
= $2\sin 2x \cos x + \sin 2x \cos x + \sin 2x \cos x$
= $2\sin 2x \cos x + \sin 2x \cos x + \sin 2x \cos x$
= $2\sin 2x \cos x + \sin 2x \cos x + \sin 2x \cos x$
= $2\sin 2x \cos x + \sin 2x \cos x + \sin 2x \cos x$
= $2\sin 2x \cos x + \sin 2x \cos x + \sin 2x \cos x$
= $2\sin 2x \cos x + \cos 2x \cos x + \sin 2x \cos x$
= $2\sin 2x \cos x + \cos 2x \cos x + \cos 2x \cos x$
= $2\sin 2x \cos x + \cos 2x \cos x + \cos 2x \cos x$
= $2\sin 2x \cos x + \cos 2x \cos x + \cos 2x \cos x$
= $2\sin 2x \cos x + \cos 2x \cos x + \cos 2x \cos x$
= $2\sin 2x \cos x + \cos 2x \cos x + \cos 2x \cos x$
= $2\sin 2x \cos x + \cos 2x \cos x + \cos 2x \cos x$
= $2\sin 2x \cos x + \cos 2x \cos x + \cos 2x \cos x$
= $2\sin 2x \cos x + \cos 2x \cos x + \cos 2x \cos x$
= $2\sin 2x \cos x + \cos 2x \cos x + \cos 2x \cos x$
= $2\sin 2x \cos x + \cos 2x \cos x + \cos 2x \cos x$
= $2\sin 2x \cos x + \cos 2x \cos x + \cos 2x \cos x$
= $2\sin 2x \cos x + \cos 2x \cos x + \cos 2x \cos x$
= $2\sin 2x \cos x + \cos 2x \cos x + \cos 2x \cos x$
= $2\sin 2x \cos x + \cos 2x \cos x + \cos 2x \cos x$
= $2\sin 2x \cos x + \cos 2x \cos x + \cos 2x \cos x$
= $2\sin 2x \cos x + \cos 2x \cos x + \cos 2x \cos x$
= $2\sin 2x \cos x + \cos 2x \cos x + \cos 2x \cos x$
= $2\sin 2x \cos x + \cos 2x \cos x + \cos 2x \cos x$
= $2\sin 2x \cos x + \cos 2x \cos x + \cos 2x \cos x$
= $2\sin 2x \cos x + \cos 2x \cos x + \cos 2x \cos x$
= $2\sin 2x \cos x + \cos 2x \cos x + \cos 2x \cos x$
= $2\sin 2x \cos x +$