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1.3 The Squeeze Theorem
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Take reciprocals and reverse inequalities
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Take limits
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The Squeeze Theorem:

If f(x) < gx) < h(x)and }Ciggf(x) =L = }}E} h(x),

Then lim g(x) = L.
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Special Limits Derived by Squeeze Theorem:
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Use the squeeze theorem to find
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1.4 Connuity and One-Sided Limits
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These are all discontinuities
(a) and (d) are removable
(b) and (c) are nonremovable
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One-Sided Limits
lim f(x) = limit from the right
x—ct
lim f(x) = limit from the left
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Continuity at a point

A function f is continuous at c if the following 3 conditions are met:
1. f(c) is defined

2. Limit of f(x) exists when x approaches c

3. Limit of f(x) when x approaches c is equal to f(c)

£ 1s continuous at ¢ i+
252 £60 =€)

Continuity on an open interval

A function is continuous on an open interval if it is continuous at each point in the interval. A function

that is continuous on the entire real line (—oo, o)is everywhere continuous.

Continuity on a closed interval
A function f is continuous on the closed interval [a, b] if it is continuous on the open interval | (a, b) and

lim,_ g+ f(x) = f(a) and lim,_ - (%) = £(b).
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