Review - Find the limits (if they exist):

- 1. $\lim_{x \to 2} f(x)$, where $f(x) = \begin{cases} 4 x, x \neq 2 \\ 0, & x = 2 \end{cases}$
- 2. $\lim_{x \to 1} f(x)$, where $f(x) = \begin{cases} 4x 7, x \neq 1 \\ 5, x = 1 \end{cases}$
- $3.\lim_{x\to 0}\frac{|x|}{x}=\text{does not exist}.$
- $4.\lim_{x\to 0}\frac{1-\cos x}{x} =$
 - $\frac{1.4}{13. \lim_{\Delta x \to 0} \frac{1}{\Delta x}} = \lim_{h \to 0} \frac{\frac{1}{x + \Delta x}}{\frac{1}{x + h}} = \lim_{h \to 0} \frac{\frac{x (x + h)}{x + h}}{\frac{1}{x + h}} = \lim_{h \to 0} \frac{\frac{x (x + h)}{x + h}}{\frac{1}{x + h}} = \lim_{h \to 0} \frac{\frac{x (x + h)}{x + h}}{\frac{1}{x + h}} = \lim_{h \to 0} \frac{\frac{x (x + h)}{x + h}}{\frac{1}{x + h}} = \lim_{h \to 0} \frac{\frac{x (x + h)}{x + h}}{\frac{1}{x + h}} = \lim_{h \to 0} \frac{\frac{x (x + h)}{x + h}}{\frac{1}{x + h}} = \lim_{h \to 0} \frac{\frac{1}{x + h}}{\frac{1}{x + h}} = \lim_{h \to 0} \frac{\frac{1}{x + h}}{\frac{1}{x + h}} = \lim_{h \to 0} \frac{\frac{1}{x + h}}{\frac{1}{x + h}} = \lim_{h \to 0} \frac{\frac{1}{x + h}}{\frac{1}{x + h}} = \lim_{h \to 0} \frac{\frac{1}{x + h}}{\frac{1}{x + h}} = \lim_{h \to 0} \frac{\frac{1}{x + h}}{\frac{1}{x + h}} = \lim_{h \to 0} \frac{\frac{1}{x + h}}{\frac{1}{x + h}} = \lim_{h \to 0} \frac{\frac{1}{x + h}}{\frac{1}{x + h}} = \lim_{h \to 0} \frac{\frac{1}{x + h}}{\frac{1}{x + h}} = \lim_{h \to 0} \frac{\frac{1}{x + h}}{\frac{1}{x + h}} = \lim_{h \to 0} \frac{\frac{1}{x + h}}{\frac{1}{x + h}} = \lim_{h \to 0} \frac{\frac{1}{x + h}}{\frac{1}{x + h}} = \lim_{h \to 0} \frac{\frac{1}{x + h}}{\frac{1}{x + h}} = \lim_{h \to 0} \frac{\frac{1}{x + h}}{\frac{1}{x + h}} = \lim_{h \to 0} \frac{1}{x + h}$

$$\frac{1.4}{39.f(x)} = \frac{x}{x^2+1}$$

9.
$$\lim_{x \to -3} \frac{x}{\sqrt{x^2-9}}$$
 defined
 $\lim_{x \to -3} \frac{x}{\sqrt{x^2-9}}$ defined
 $\lim_{x \to$

defined

$$(x-9>0)$$

 $(x-3)(x+3)>0$
 $(x-3)(x+3)>0$
 $(x-3)(x+3)>0$
 $(x-3)(x+3)>0$

1.4—(dis)continuity 12/Trig functions
& I[X]; Intermediate Value Theorem

The Greatest Integer Function

[[X] = the greatest integer
less than or equal to X

Lim [[X]]

= [-3]

22.
$$\lim_{x \to 2^{+}} 2x - [x]$$

$$= \lim_{x \to 2^{+}} 2x - \lim_{x \to 2^{+}} [x]$$

$$= 4 - \lim_{x \to 2^{+}} [x]$$

$$= 4 - 2 = 2$$

$$24 \cdot \lim_{x \to 1} \left(1 - \frac{x}{2} \right)$$

$$= \lim_{x \to 1} \left[-\frac{x}{2} \right]$$

52.
$$f(x)=tan\frac{\pi x}{2}$$

discuss the (dis) continuity

non-removable

period: T/2 = 2 discontinuities

f is continuous on all intervals of the form (2n-1,2n+1)

b2.
$$f(x) = \frac{1}{|x|} \cdot g(x) = x - 1$$

Discuss the continuity of $f(g(x))$.
 $f(g(x)) = \frac{1}{|x-1|}$ f is continuous
 $x > 1$ on $(1, \infty)$
(its domain)

64.
$$f(x) = \sin x$$
; $g(x) = x^2$
discuss the continuity of $f(g(x))$
 $f(g(x)) = \sin (x^2)$
 $g(f(x)) = \sin^2 x$
 $f(g(x)) = \sin^2 x$

Intermediate Value Theorem If f is continuous on the closed interval [a,b] and k is any number between f(a) and f(b), then there is at least one number c in [a,b] such that f(c)=k

76.
$$f(x)=x^3+3x-2$$
, [0,1]

f is continuous on [0,1] $\sqrt{f(0)}=-2<0$
 $f(1)=2>0$
 $\Rightarrow |VT| guarantees a zero in [0,1]$

84.
$$f(x) = x^2 - 6x + 8$$
; [0,3]; $f(x) = 0$
 $f(x) = 8$ | IVT guarantees
 $f(3) = -1$ | VT guarantees
 $f(3) = -1$ | $f(3) = -$