Diff Cal - 1.2 - Limits August 13, 2014

Informal Description of the Limit

If f(x) becomes arbitrarily close to a single number L as x approaches c from either side, the <u>limit</u> of f(x), as x approaches c, is L.

$$\lim_{x\to c} f(x) = L$$

<u>Note</u>: the existence or nonexistence of f(x) at x=c has no bearing on the existence of the limit as x approaches c.

$$f(x) = \begin{cases} 1, & x \neq -3 \end{cases}$$
 $y = 1$
 $\begin{cases} 0, & x = -3 \end{cases}$ $f(-3) = 0$
 $\begin{cases} 1 & x \neq -3 \end{cases}$ $f(x) = \begin{bmatrix} 1, & x \neq -3 \end{cases}$

$$\lim_{x \to 0} \frac{|2x|}{x}$$

$$|x| = \begin{cases} \frac{2}{x}, x \ge 0 \\ -\frac{(2x)}{x} = 2, x < 0 \end{cases}$$

$$\lim_{x \to 0} \frac{|2x|}{x} = \lim_{x \to 0} \frac{|x|}{x} = 2, x < 0$$

$$\lim_{x \to 0} \frac{|x|}{x} = \lim_{x \to 0} \frac{|x|}{x} = 2$$

$$\lim_{x \to 3} \frac{|x-3|}{|x-3|} = \lim_{x \to 3} \frac{|x-3|}{|x-3|} =$$

lim Sin X AMA						
X \	2 T	2 31	2 ST	2 711	$\frac{2}{9\pi}$	2
SinX		-1		-		-1
Th	e Limi	+ fexis	 	1	l	

"Dirichlet Function"

$$f(x) = So$$
, if x is rational

I'm $f(x)$ does not exist

for amy value

of C.

Graph the rational function.

$$f(x) = \frac{(x+4)(x-1)}{(x-2)(x+1)}$$

$$\lim_{x \to \infty} f(x) = 1$$

$$f(x) = \frac{x(x-2)}{x+3} \qquad \lim_{x \to \infty} f(x) = -\infty$$

$$\lim_{x \to \infty} f(x) = -\infty$$

Informal Description of the Limit

If f(x) becomes arbitrarily close to a single number L as x approaches c from either side, the <u>limit</u> of f(x), as x approaches c, is L.

$$\lim_{x \to c} f(x) = L$$

<u>Note</u>: the existence or nonexistence of f(x) at x=c has no bearing on the existence of the limit as x approaches c.

Building up to the $\epsilon - \delta$ Definition of the Limit

<u>Translating the "informal description"</u>: $\lim_{x\to c} f(x) = L$

E=epsilon S=delta

If f(x) becomes arbitrarily close to a single number L as x approaches c from either side, the limit of f(x), as x approaches c, is L.

"f(x) becomes arbitrarily close to L"

f(x) lies in the interval $(L - \varepsilon, L + \varepsilon)$ for some (really small) $\varepsilon > 0$.

$$|f(x) - L| < \varepsilon$$

"the distance between f(x) and L is less than ε "

"x approaches c"

There exists a (very small) positive number δ such that x is either in the interval $(c - \delta, c)$ or $(c, c + \delta)$.

$$0 < |x - c| < \delta$$

The first inequality guarantees that $x \neq c$.

$\varepsilon - \delta$ Definition of the Limit:

Let f be a function defined on an open interval containing c (except possibly at c) and let L be a real number. The statement

means that for each $\varepsilon > 0$, there exists a $\delta > 0$ such that if $0 < |x - c| < \delta$, then $|f(x) - L| < \varepsilon$.

If x is 8-dose toc, then f(x) is E-close to L.

Diff Cal - 1.2 - Limits August 13, 2014

Homework:

Already assigned: 1.2 #1-7odd,9-18all

New:

1.2 #23, 25, 27, 29, 30, 31

and watch all of the Khan Academy epsilon-delta videos!