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3.2 Rolle's Theorem & The Mean Value Theorem

The Mean Value Thereom (MVT) states: If f is continuous on [a,b] and
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differentiable on (a,b), then there exists at least one c in (a,b) such that the slope
of the tangent line at c is equal to the slope of the secant line through (a, f(a)) and

(b, f(b)).
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Rolle's Theorem is a special case of the MVT where f(a)=f(b),

(and hence involving horizontal secant/tangent lines)
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32. £00= % (Cx-2) [-1,17]
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3.3-3.4 Increasing, Decreasing, Concavity, and the 1st and 2nd Derivative Tests

What do f" and f"' tell us about f?

Recall that f" is the rate of change or slope off,
f" is the slope or rate of change of f'.
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f(x)=0 when f has a relative maximum or minimum.
These x-values (and those where f'(x) is undefined) are called critical numbers.

f"(x)=0 when f changes concavity.
The points where concavity changes are called inflection points.

To solve problems involving concavity, increasing/decreasing, etc., we should
recall how to solve polynomial inequalities.
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* Find all critical number\s/and state the open intervals on which f is increasing
and/or decreasings/

¢ Find all inflection points and state the open intervals on which f is concave up
and/or concave down./

¢ Use these results to determine all relative and absolute extrema.
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Homework #6 (submitted Wed. 9/17)
2.5 #1-39 odd; 43, 47 - Implicit Differentiation

Homework #7 (due Fri. 9/26)

2.6 # 15-23 odd - Related Rates

2.6 # 25, 27, 35 - Related Rates (more challenging problems)
3.1 # 17-31 odd - Absolute Extrema on an Interval

Homework #8 (due Fri, 10/3)

3.2 #7-19 odd - Rolle's Theorem

3.2 # 31-37 odd - Mean Value Theorem

3.3 # 11-31 odd - Increasing, Decreasing, and Relative Extrema
3.4 #11-25 odd - Inflection Points and Concavity

Quiz #4 - Mon, 9/29
Test #3 - Fri, 10/3
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