Turn in Homework #1 1.2 #1-7odd,9-18all

$$\lim_{X \to 3} \frac{|X-3|}{|X-3|} = \lim_{X \to 3} \frac{|X-3|}{|X-3|} =$$

$$\lim_{X \to 0} \frac{1}{X^4} = \infty$$

"Dirichlet Function" f(x) = So, if x is rational So, if x is irrational So So

Graph the rational function.

Building up to the $\epsilon - \delta$ Definition of the Limit

<u>Translating the "informal description"</u>: $\lim_{x\to c} f(x) = L$

If f(x) becomes arbitrarily close to a single number L as x approaches c from either side, the limit of f(x), as x approaches c, is L.

"f(x) becomes arbitrarily close to L"

f(x) lies in the interval $(L - \varepsilon, L + \varepsilon)$ for some (really small) $\varepsilon > 0$.

$$|f(x) - L| < \varepsilon$$

"the distance between f(x) and L is less than ε "

"x approaches c"

There exists a (very small) positive number δ such that x is either in the interval $(c - \delta, c)$ or $(c, c + \delta)$.

$$0 < |x - c| < \delta$$

The first inequality guarantees that $x \neq c$.

$\varepsilon - \delta$ Definition of the Limit:

Let f be a function defined on an open interval containing c (except possibly at c) and let L be a real number. The statement

> another arbitrarily small $\lim f(x) = L$

means that for each $\varepsilon > 0$, there exists a $\delta > 0$ such that if $0 < |x - c| < \delta$, then $|f(x) - L| < \varepsilon$.

then f(x) is E-close to L.

$\varepsilon - \delta$ Definition of the Limit:

 $\lim_{x\to c} f(x) = L$ if given $\varepsilon > 0$, there exists a $\delta > 0$ such that

 $|f(x) - L| < \varepsilon$ whenever $0 < |x - c| < \delta$.

$$f(x) = \begin{cases} x^2, & x \neq 1 \\ -1, & x = 1 \end{cases}$$

$$\lim_{x \to 1} f(x) = \int_{0}^{2} |x|^2 dx$$

$$\lim_{x \to 1} f(x) = 1$$

HW #1 (submitted 11/7): 1.2 #1-7odd,9-18all

HW #2 (due 11/14):

1.2 #23, 25, 27, 29, 30, 31

and watch all of the Khan Academy epsilon-delta videos!