Homework for Test #1:

Test #1 - Tues. 9/1

- 1.2 #1-7odd,9-18all
- 1.2 #23, 25, 27, 29, 30, 31 (and watch all of the Khan Academy epsilon-delta epsilon delta

Tuesday

- 1.3 #11,17,27-35odd, 39-61odd
- evaluating limits analytically 1.3 #67-77odd; 87, 88 limits with trig, squeeze theorem
- 1.4 #7-17odd; 1.4 #25-28all; 39-47odd;
- 1.4 #19,21,23,51,57,59,63,69,71 1.4 #83,85
- 1.5 #1,3,25; 29-51odd
- Ch 1 review pp. 88-89 #3-49odd; 51-67odd
- Test #1 Practice Problems handout

(not due until after the test, but will still help you with limits that will be on the test)

• 2.1 -#1-23odd

derivative definition

infinite limits

discuss (dis)continuity

misc. continuity problems

intermediate value theorem

limits of functions with discontinuities

1.4 Continuity and One-Sided Limits

These are all discontinuities

- (a) and (d) are removable
- (b) and (c) are nonremovable

$$\lim_{x \to -1^{-}} f(x) = 2$$

$$\lim_{x \to -1^{+}} f(x) = 0$$

$$\lim_{x \to -1^{+}} f(x) = 0$$
One-Sided Limits

One-Sided Limits

 $\lim_{x \to c^+} f(x) = L \quad limit from the right$

$$\lim_{x \to c^{-}} f(x) = L \quad \text{limit from the left}$$

$$\lim_{x \to c} f(x) = L \quad \text{if and only if}$$

$$\lim_{x \to c^-} f(x) = L = \lim_{x \to c^+} f(x)$$

Continuity at a point

A function f is <u>continuous at c if the following 3 conditions are met:</u>

- 1. f(c) is defined
- 2. Limit of f(x) exists when x approaches c
- 3. Limit of f(x) when x approaches c is equal to f(c)

$$f(x)$$
 is continuous at c if $\lim_{x \to c} f(x) = f(c)$

Continuity on an open interval

A function is <u>continuous on an open interval</u> if it is continuous at each point in the interval. A function that is continuous on the entire real line $(-\infty,\infty)$ is <u>everywhere continuous</u>.

Continuity on a closed interval

A function f is $\underline{\text{continuous on the closed interval}}\,[a,b]$ if it is continuous on the open interval I (a,b) and $\lim_{x\to a^+} f(x) = f(a)$ and $\lim_{x\to b^-} f(x) = f(b)$.

10.
$$\lim_{x \to 4^{-}} \frac{\sqrt{x} - 2}{x - 4} \cdot \frac{\sqrt{x} + 2}{\sqrt{x} + 2}$$

$$= \lim_{x \to 4^{-}} \frac{1}{(x + 2)(\sqrt{x} + 2)}$$

$$= \frac{1}{\sqrt{4} + 2} = \frac{1}{4}$$

12.
$$\lim_{x \to 2^{+}} \frac{|x - 2|}{x - 2} = \int_{X-2}^{X-2} \frac{|x - 2|}{|x - 2|} = \int_{X-2}^{X-2} \frac{|x - 2|}{|$$

Discuss the [dis]continuity of the function.

$$f(x) = \frac{(x+4)(x-2)}{(x-2)(x+1)}$$

removable discontinuity @ x=2non-removable discontinuity @ X=-1f is continuous on $(-\infty,-1)^{\nu}(-1,2)^{\nu}(2,\infty)$

$$f(x) = \frac{|x-2|}{x-2}$$

Discuss the [dis]continuity of the function.

f has a non-removable (jump) discontinuity 0×2 f is continuous on $(-\infty, 2)$ $v(2, \infty)$

$$f(x) = \begin{cases} x^2 - 2, & x \ge 1 \\ 5, & x < 1 \end{cases}$$
 Discuss the [dis]continuity of the function.

 $1^{2}-2=1-2=-1$ f has a non-removable $5\neq -1$ (jump) discontinuity. $0 \times 2=1$ fis continuous on $(-\infty,1)$ $0 \times 1=0$

Discuss the [dis]continuity of the function.

(-∞, 3 \ v (3,∞)