Due Wed. 3/22:

2.1 #1-41 odd;

Due Mon. 3/27:

2.1 #65-89 odd

2.2 #3-67 odd;

Due sometime later next week:

87-95 odd; 97-100 all; 105,106,111,113,115

As $h \to 0$, the secant line approximates the tangent line, and the limit is the slope of the tangent line and we call it **the derivative of** f at x.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

f'(x) "f prime of x"

 $\frac{dy}{dx}$ "derivative of y with respect to x"

y' "y prime"

 $\frac{d}{dx}[f(x)]$ "the derivative with respect to x of f(x)"

 $D_x[y]$ "the partial derivative with respect to x of y"

The Derivative

The slope of the tangent line to the graph of f

at the point (c, f(c)) is given by:

$$m = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x} = f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

The <u>derivative of f at x</u> is given by

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

2.1 Differentiability & Continuity

Alternative definition of the derivative at the point (c, f(c)):

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

All differentiable functions are continuous, but not all continuous functions are differentiable.

e.g.
$$f(x) = |x|$$

$$\frac{|x|}{x} = \begin{cases} \frac{1}{x} = 1, & x < 0 \end{cases}$$

$$\lim_{x \to 0} + f(x) = 1$$

Since the left-

$$f(x) = |x + 3|$$

2.2 Basic Differentiation Rules

1. The derivative of a constant function is zero, i.e.,

for
$$c \in \mathbb{R}$$
, $\frac{d}{dx}[c] = 0$

Proof:

2. Power Rule for $n \in \mathbb{Q}$, $\frac{d}{dx}[x^n] = nx^{n-1}$

Special case: $\frac{d}{dx}[x] = 1$

Proof:

Recall the binomial expansion:

$$(a+b)^{n} = a^{n} + na^{n-1}b + \frac{n(n-1)}{2}a^{n-2}b^{2} + \dots + \frac{n!}{k!(n-k)!}a^{n-k}b^{k} + \dots + b^{n}$$

$$[\times]' = \lim_{h \to 0} \frac{(x+h)' - x}{h}$$

$$= \lim_{h \to 0} \frac{x'' + hx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h^{2} + \dots + \dots + h^{n}}{h}$$

$$= \lim_{h \to 0} \frac{x'' + hx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h^{2} + \dots + \dots + h^{n}}{h}$$

$$= \lim_{h \to 0} \frac{x'' + hx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h^{2} + \dots + h^{n}}{h}$$

$$= \lim_{h \to 0} \frac{x'' + hx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h^{2} + \dots + h^{n}}{h}$$

$$= \lim_{h \to 0} \frac{x'' + hx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h^{2} + \dots + h^{n}}{h}$$

Examples:
$$\frac{d}{dx}[x^{7}] = \frac{1}{1}$$

$$\frac{d}{dx}[\pi^{3}] = 0$$

$$\frac{d}{dx}[2e] = 0$$

$$\frac{d}{dx}[\sqrt{x}] = \frac{d}{dx}(\sqrt{x^{2}}) = \frac{1}{2}$$

$$\frac{d}{dx}\left[\frac{1}{x^{3}}\right] = \frac{d}{dx}\left[\sqrt{x^{3}}\right] = \frac{1}{2}$$

$$\frac{d}{dx}\left[\frac{1}{x^{3}}\right] = \frac{1}{2}$$

2.2 Basic Differentiation Rules

1. The <u>derivative of a constant function</u> is zero, i.e.,

for
$$c \in \mathbb{R}$$
, $\frac{d}{dx}[c] = 0$

- 2. <u>Power Rule</u> for $n \in \mathbb{Q}$, $\frac{d}{dx}[x^n] = nx^{n-1}$
- 3. Constant Multiple Rule $\in \mathbb{R}$, $\frac{d}{dx}[cf(x)] = cf'(x)$
 - $[5x^2] = 5 \cdot [x^2]$ $[3 \sin x] = 3[\sin x]$
- 4. Sum & Difference Rules $\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$

Examples:

$$f(x) = 3x^{2}$$

$$f'(x) = 3 \cdot (x^{2})' = 3 \cdot 2x = \sqrt{6x}$$

$$f(x) = \frac{3}{x} = 3 \times -1$$

$$f'(x) = (-3 \times -2)$$

$$g(x) = 2x^{3} - x^{2} + 3x$$

$$g'(x) = (0x^{2} - 2x + 3)$$

$$y = 4x^{3/2} - 5x^{4} + 2x^{\frac{1}{3}} - 7$$

$$y' = 4(\frac{3}{2}x^{\frac{3}{2}} - \frac{2}{2}) - 5(4x^{3}) + 2(\frac{1}{3}x^{\frac{3}{3}} - \frac{3}{3}) - C$$

$$= (0x^{\frac{1}{2}} - 20x^{\frac{3}{2}} + \frac{2}{3}x^{\frac{-2}{3}})$$