Differential Calculus - 2.1-2.2 - Differentiability & Continuity; Basic Rules

Due Wed. 3/22:
2.1 #1-41 odd;

Due Mon. 3/27:

2.1 #65-89 odd
2.2 #3-67 odd;

S Due sometime later next week:
87-95 odd; 97-100 all; 105,106,111,113,115

2.1 The Derivative & secant line
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As h — 0, the secant line approximates the tangent line, and the limit is
the slope of the tangent line and we call it the derivative of f at x.
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f(x+ h)-f(x)
f'(x)=1lim
( ) h—0 h
f'(x) "f prime of x"
dy _— .
— "derivative of y with respect to x"
dx
y' "y prime"

Ix [f(x)] "the derivative with respect to x of f(x)"

D.|y] "the partial derivative with respect to x of y"

The Derivative

The slope of the tangent line to the graph of f
at the point (¢, f(c)) is given by:

m= lim =2 = Jim f(CM‘x) @0 - £ = hm‘?cﬂ\ — ()

Ax—0 Ax Ax—0

The derivative of f at x is given by
Fat a0 - £ - F
f'(x) = lim -
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2.1 Differentiability & Continuity
Alternative definition of the derivative at the point (¢, f(c)): —?(.747
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2.2 Basic Differentiation Rules

1. The derivative of a constant function is zero, i.e.,

forc € R, %[c] =0
Proof:
| 6m(>h ot Constant
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d _ 41
2. Power Rule for ne@, a[x"] = nx™1 SpeC'al case: ﬂ

Proof: [:x ] _ i x \
Recall the binomial expansion:

n(n— 1 a"—2h2
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Examples:
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2.2 Basic Differentiation Rules

1. The derivative of a constant function is zero, i.e.,

forc € R, i[c:] =0
dx

2. Power Rule for ne@, %[x”] = nx™1

3. Constant Multiple Rule € R, - [cf (x)] = cf'(x) E’S)&] 5 [:7\}
E?) S’“X} 5@1/\)&’j

4. Sum & Difference Rules % [f(x) £ g(x)] =f"(x) £+ g (x)

Examples:

f(x) = 3x2 NG

Fo0=2 () = 32x =(ex]
fo =2 = 2 <

P =(=3xXY)

g(x) =2x% —x2 +3x

3/(@ :@xz TZ@

y = 4x3/2 — 5x* 4 2x3 — 7

Y=4@ExX K2 /Z> 5(4>
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