1.4 Continuity and One-Sided Limits

These are all discontinuities

- (a) and (d) are removable
- (b) and (c) are nonremovable

Continuity at a point

A function f is continuous at c if the following 3 conditions are met:

- 1. f(c) is defined
- 2. Limit of f(x) exists when x approaches c
- 3. Limit of f(x) when x approaches c is equal to f(c)

$$f(x)$$
 is continuous at c if
$$\lim_{x \to c} f(x) = f(c)$$

Continuity on an open interval

A function is <u>continuous on an open interval</u> if it is continuous at each point in the interval. A function that is continuous on the entire real line $(-\infty,\infty)$ is <u>everywhere continuous</u>.

Continuity on a closed interval

A function f is <u>continuous on the closed interval</u> [a,b] if it is continuous on the open interval I(a,b) and $\lim_{x\to a^+} f(x) = f(a)$ and $\lim_{x\to b^-} f(x) = f(b)$.

Discuss the [dis]continuity of the function.

$$f(x) = \frac{(x+4)(x-2)}{(x-2)(x+1)}$$

removable discontinuity @ X=2 (hole) non-removable discontinuity @ X=-1 (V.A.)

f is continuous on

$$\{x \mid x \neq -1, 2\}$$

= $(-\infty, -1) \cup (-1, 2) \cup (2, \infty)$

$$f(x) = \begin{cases} x^2 - 2, x \ge 1 \\ 5, x < 1 \end{cases}$$

$$\lim_{x \to 1^{-}} f(x) = 5$$
 $\lim_{x \to 1^{+}} f(x) = DNE$
 $\lim_{x \to 1^{+}} f(x) = |^{2} - 2 = -|$

f has a non-removable (jump) discontinuity @ x=1.

fis continuous on (-00,1) u[1,00)

$$f(x) = \frac{|x-2|}{x-2}$$

f has a non-removable (jump) discontinuity
$$\emptyset X=2$$

f is continuous on $(-\infty,2)$ \cup $(2,\infty)$

$$f(x) = \begin{cases} x + 6, & x \le -2 \\ x^2, & -2 < x \le 3 \end{cases}$$

$$\begin{cases} x > 3 \\ x > 3 \end{cases}$$

$$\begin{cases} -2 + 6 = (-2)^2 \implies f \text{ is continuous } @ -2 \\ 3^2 \neq 8 \implies f \text{ has a non-removable (jump)} \\ \text{discontinuity } @ x = 3 \end{cases}$$

$$f \text{ is continuous on } (-\infty, 3] \cup (3, \infty)$$

$$\begin{cases} \lim_{x \to 3^{-1}} f(x) \neq f(3) \\ x + 3 \end{cases}$$

$$f(x) = \int \frac{|x-3|}{3-x} > \int \frac{|x-3|}{3-x} = \int \frac$$

The Greatest Integer Function

[X] = the greatest integer
less than or equal to X

"step function"

22.
$$\lim_{x \to 2^{+}} 2x - [x]$$

$$= \lim_{x \to 2^{+}} 2x - \lim_{x \to 2^{+}} [x]$$

$$= a(2) - 2$$

$$= 2$$

24.
$$\lim_{X \to 1} (1 - \sqrt{1 - \frac{x}{2}})$$

= $\lim_{X \to 1} (1) - \lim_{X \to 1} \sqrt{1 - \frac{x}{2}}$
= $1 - (-1)$
= 2

20. lim secx DNE