3.9-Differentials

Recall:
For a function f that is differentiable at c, the equation of the tangent line at the point $(c, f(c))$ is given by
$y-f(c)=f^{\prime}(c)(x-c)$
This follows from the point-slope equation $y-y_{1}=m\left(x-x_{1}\right)$, where the slope m is the derivative $f^{\prime}(x)$ evaluated at the point $(c, f(c))$.

Since $c, f(c)$, and $f^{\prime}(c)$ are all constants, if we rearrange to solve for y,
$y=f(c)+f^{\prime}(c)(x-c)$
y is a linear function of x, called the linear approximation or tangent line approximation to the graph of $f(x)$ at $x=c$.
$T(x)=f(c)+f^{\prime}(c)(x-c)$
For values of x close to c, values of $y=T(x)$ can be used as approximations of the values of the original function f.

Recall that the slope of the secant line through two points $(c, f(c))$ and $(x, f(x))$ is given by $\frac{\Delta y}{\Delta x}=\frac{f(x)-f(c)}{x-c}$, and the slope of the tangent line is the limit as the distance between these two points goes to zero of this expression, which we define to be the derivative.
Noting that the change in x is $\Delta x=x-c$, or $x=c+\Delta x$ and hence $f(x)=f(c+\Delta x)$, we can write this two ways:

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}
$$

Actual change in y is $\Delta y=f(x)-f(c)=f(c+\Delta x)-f(c)$.
Recalling the tangent line approximation equation
$T(x)=f(c)+f^{\prime}(c)(x-c)=f(c)+f^{\prime}(c) \Delta x$
We can see that change in y can be approximated by $T(x)-f(c)$, or
Approximate change in y is $\Delta y \approx f^{\prime}(c) \Delta x$.
For such an approximation, Δx is denoted $d x$, and is called the differential of x. The expression $f^{\prime}(x) d x$ is denoted by $d y$ and called the differential of y.

$$
d y=f^{\prime}(x) d x
$$

In many applications, the differential of y can be used as an approximation of the actual change in y, i.e. $\Delta y \approx f^{\prime}(x) d x$

All of the differentiation rules can be written in differential form.
By definition of differentials, we have for functions (of x) u and v :
$d u=u^{\prime} d x$ and $d v=v^{\prime} d x$
Note that rearranged, these look like $\frac{d u}{d x}=u^{\prime}$ and $\frac{d v}{d x}=v^{\prime}$.
For example, the Product Rule becomes:
$d[u v]=[u v]^{\prime} d x=\left[u v^{\prime}+v u^{\prime}\right] d x=u v^{\prime} d x+v u^{\prime} d x=u d v+v d u$

Differential Formulas

Constant multiple: $\quad d[c u]=c d u$
Sum or difference: $\quad d[u \pm v]=d u \pm d v$
Product: $\quad d[u v]=u d v+v d u$
Quotient:

$$
d\left[\frac{u}{v}\right]=\frac{v d u-u d v}{v^{2}}
$$

3.9\#2 $f(x)=\frac{6}{x^{2}} \quad ; \quad\left(2, \frac{3}{2}\right)$

Compare the actual function values with the tangent line approximation near 2.
$f(x)=$
$f^{\prime}(x)=$
$f^{\prime}(2)=$
Tangent line $T(x): y=f(c)+f^{\prime}(c)(x-c)$

x	1.9	1.99	2	2.01	2.1
$f(x)$					
$T(x)$					

3.9 \#8 $y=1-2 x^{2}=f(x) ; \quad x=0 ; \quad \Delta x=d x=-0.1$

Compare $d y$ and Δy for the given values of x and Δx.

$$
\Delta y=f(c+\Delta x)-f(c) \quad d y=f^{\prime}(x) d x
$$

Find the differential $d y$. $d y=f^{\prime}(x) d x$
12. $y=3 x^{2 / 3}$
16. $y=\sqrt{x}+\frac{1}{\sqrt{x}}$
14. $y=\sqrt{9-x^{2}}$
20. $y=\frac{\sec ^{2} x}{x^{2}+1}$

Use differentials to approximate $\sqrt[3]{26}$

$$
\left.\begin{array}{l}
\Delta y=f(c+\Delta x)-f(c) \\
d y=f^{\prime}(x) d x \\
\Delta y \approx d y
\end{array}\right\} \rightarrow \boldsymbol{f}(\boldsymbol{c}+\Delta \boldsymbol{x})-\boldsymbol{f}(\boldsymbol{c}) \approx \boldsymbol{f}^{\prime}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x} 9 \quad ; \quad c=27 \quad \Delta x=d x=-1
$$

Recall rules of exponents: $x^{m / n}=\left(x^{m}\right)^{1 / n}=\left(x^{1 / n}\right)^{m}$

$$
=\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m}
$$

3.9 \#50

Use differentials to approximate $\tan (0.05)$.

$$
\begin{aligned}
& f(c+\Delta x) \approx f(c)+f^{\prime}(x) d x \\
& f(x)=\quad ; \quad c=\quad \Delta x=d x=
\end{aligned}
$$

Homework:

