3.9 - Differentials

Recall:

For a function f that is differentiable at c, the equation of the <u>tangent line</u> at the point (c, f(c)) is given by

$$y - f(c) = f'(c)(x - c)$$

This follows from the <u>point-slope equation</u> $y - y_1 = m(x - x_1)$, where the slope *m* is the derivative f'(x) evaluated at the point (c, f(c)).

Since c, f(c), and f'(c) are all constants, if we rearrange to solve for y,

$$y = f(c) + f'(c)(x - c)$$

y is a linear function of *x*, called the <u>linear approximation</u> or <u>tangent line</u> <u>approximation</u> to the graph of f(x) at x = c.

T(x) = f(c) + f'(c)(x - c)

For values of x close to c, values of y = T(x) can be used as approximations of the values of the original function f.

Recall that the slope of the *secant line* through two points (c, f(c)) and (x, f(x)) is given by $\frac{\Delta y}{\Delta x} = \frac{f(x) - f(c)}{x - c}$, and the slope of the *tangent line* is the limit as the distance between these two points goes to zero of this expression, which we define to be the derivative.

Noting that the change in x is $\Delta x = x - c$, or $x = c + \Delta x$ and hence $f(x) = f(c + \Delta x)$, we can write this two ways:

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x}$$

<u>Actual change in y</u> is $\Delta y = f(x) - f(c) = f(c + \Delta x) - f(c)$.

Recalling the tangent line *approximation* equation

 $T(x) = f(c) + f'(c)(x - c) = f(c) + f'(c)\Delta x$

We can see that change in *y* can be approximated by T(x) - f(c), or

<u>Approximate change in *y* is $\Delta y \approx f'(c)\Delta x$.</u>

For such an approximation, Δx is denoted dx, and is called the <u>differential of x</u>. The expression f'(x)dx is denoted by dy and called the <u>differential of y</u>.

$$dy = f'(x)dx$$

In many applications, the differential of *y* can be used as an approximation of the actual change in *y*, i.e. $\Delta y \approx f'(x)dx$

All of the differentiation rules can be written in <u>differential form</u>. By definition of differentials, we have for functions (of *x*) *u* and *v*: du = u'dx and dv = v'dx

Note that rearranged, these look like $\frac{du}{dx} = u'$ and $\frac{dv}{dx} = v'$.

For example, the Product Rule becomes:

d[uv] = [uv]'dx = [uv' + vu']dx = uv'dx + vu'dx = udv + vdu

Differential Formulas

Constant multiple:	d[cu] = cdu
Sum or difference:	$d[u \pm v] = du \pm dv$
Product:	d[uv] = udv + vdu
Quotient:	$d\left[\frac{u}{v}\right] = \frac{vdu - udv}{v^2}$

3.9 #2
$$f(x) = \frac{6}{x^2}$$
 ; $\left(2, \frac{3}{2}\right)$

Compare the actual function values with the tangent line approximation near 2.

f(x) = f'(x) = f'(2) =Tangent line T(x): y = f(c) + f'(c)(x - c)

x	1.9	1.99	2	2.01	2.1
f(x)					
T(x)					

 $3.9 \#8 \quad y = 1 - 2x^2 = f(x) ; \quad x = 0 ; \quad \Delta x = dx = -0.1$ Compare dy and Δy for the given values of x and Δx . $\Delta y = f(c + \Delta x) - f(c) \qquad \qquad dy = f'(x)dx$

Find the differential *dy*.

$$dy = f'(x)dx$$

12.
$$y = 3x^{2/3}$$

16. $y = \sqrt{x} + \frac{1}{\sqrt{x}}$

14.
$$y = \sqrt{9 - x^2}$$
 20. $y = \frac{\sec^2 x}{x^2 + 1}$

<u>3.9 #46</u>

Use differentials to approximate $\sqrt[3]{26}$

$$\Delta y = f(c + \Delta x) - f(c)$$

$$dy = f'(x)dx$$

$$\Delta y \approx dy$$

$$f(c + \Delta x) - f(c) \approx f'(x)dx$$

$$f(c + \Delta x) \approx f(c) + f'(x)dx$$

$$f(x) = \sqrt[3]{x} \qquad ; \qquad c = 27 \qquad ; \qquad \Delta x = dx = -1$$

$$f'(x) = \sqrt[3]{26} = \sqrt[3]{27 + (-1)} \approx$$

Recall rules of exponents: $x^{m/n} = (x^m)^{1/n} = (x^{1/n})^m$ = $\sqrt[n]{x^m} = (\sqrt[n]{x})^m$

<u>3.9 #50</u>

Use differentials to approximate tan(0.05).

$$f(c + \Delta x) \approx f(c) + f'(x)dx$$

$$f(x) = ; c = ; \Delta x = dx = dx$$

Homework:

3.9 #5, 9; 11-19 odd; 45, 49