Updated/Revised deadlines:

Thurs. 12/6 - Knot Theory due

Mon. 12/10 - Outline & Sources due

Thurs. 12/13 - Fractals due

FRACTALS

Fractals:

- •are self-similar (at least approximately), i.e. have the rescaling property (when you zoom in on a piece it looks like the whole)
- have fine structure on arbitrarily small scales
- often have simple, recursive definitions

Mandelbrot Set Romanesco broccoli Coastline of Norway

The Cantor Middle-Third Set:

To obtain C_{n+1} from C_n , we remove the middle third of each interval in C_n . The Cantor set C is the intersection of all C_n . C is a fractal.

 C_n consists of 2^n closed intervals of length $\frac{1}{3^n}$. The total length of C_n is $\left(\frac{2}{3}\right)^n$, which approaches 0 as n approaches ∞ . Hence the "length" of C is 0.

Another way to state this is that the length of $C_{n+1} = \frac{2}{3} \cdot length$ of C_n . Given this recursive definition, again we have that the length of C_n is , which approaches 0 as n approaches ∞ .

The total length removed from the interval [0,1] in the construction of the Cantor set is

$$\frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \dots = \sum_{n=0}^{\infty} \frac{2^n}{3^{n+1}} = \sum_{n=0}^{\infty} \frac{1}{3} \left(\frac{2}{3}\right)^n = \frac{\frac{1}{3}}{1 - \frac{2}{3}} = \frac{\frac{1}{3}}{\frac{1}{3}} = \mathbf{1}$$

Hence we have a set from which its entire length has been removed. Yet there are still infinitely many points left in the set. Which points are they?

endpoints of the intervals

Note: the sum of an infinite geometric series with common ratio less than 1 in absolute value is equal to

 $S_{\infty} = rac{a_1}{1-r}$, where a_1 is the first term and r is the common ratio.

$$\sum_{n=0}^{\infty} \alpha^n = \frac{\alpha_n}{1-1}$$

Koch Curve:

Koch Snowflake:

Fractal Dimension:

Recall that points in space are 0-dimensional; lines are 1-dimensional; a square is 2-dimensional; and a cube is 3-dimensional. Fractals don't behave exactly like objects in these integer dimensions.

Suppose that an object has the following property: if we scale it down by a factor of S, then the object can be built from N scaled-down versions of itself.

The Cantor Middle-Third Set:

Suppose that an object has the following property: if we scale it down by a factor of S, then the object can be built from N scaled-down versions of itself.

$$d = \frac{\log N}{\log S} = \underline{\text{fractal dimension}}$$

$$\underline{\mathsf{Ex}}\ \underline{\mathsf{Cantor\,Set}}\ S=3$$
 , $N=2$, $d=\frac{\log 2}{\log 3}pprox 0.63$

Koch Curve:

$$S=3$$
 , $N=4$, $d=\frac{\log 4}{\log 3} pprox 1.62$

 $T_n \ \underline{\mathrm{consists}} \ \mathrm{of} \ 3^n \ \mathrm{triangles} \ \mathrm{of} \ \mathrm{area} \ \Big(\frac{1}{4} \Big)^n;$

How much was removed?

We remove 3^n triangles of area $\left(\frac{1}{4}\right)^{n+1}$ to get T_{n+1} from T_n . Hence the total area removed is:

$$\sum_{n=0}^{\infty} \frac{1}{4} \left(\frac{3}{4}\right)^n = \frac{\frac{1}{4}}{1 - \frac{3}{4}} = \frac{\frac{1}{4}}{\frac{1}{4}} = 1$$

 $P_{n+1}=rac{3}{2}P_n$, which implies that $P_n=\left(rac{3}{2}
ight)^n$,

which approaches ∞ as n approaches ∞ .

The Sierpinski triangle has zero area but an infinite perimeter!

<u>Fractal Dimension:</u> S=2 , N=3 , $d=\frac{\log 3}{\log 2}\approx 1.58$

	N 3 -	r_1
Perimeter of this iteration	$P_0 = \frac{6}{\sqrt[4]{3}}$	$P_1 = \frac{9}{\sqrt[4]{3}}$
Perimeter of this iteration divided by perimeter of previous iteration	N/A	$\frac{P_1}{P_0} = \frac{3}{2}$
Area removed from previous iteration to obtain this iteration	N/A	1/4
Total area removed up to this point	0	1/4
Number of triangles in this iteration	1	3
Area of a triangle in this iteration	1	14
Total area of this iteration	$A_0 = 1$	$A_1 = 3/4$

Sierpinski Carpet:

Menger Sponge:

