FRACTALS ### Fractals: - are self-similar (at least approximately), i.e. have the rescaling property (when you zoom in on a piece it looks like the whole) - •have fine structure on arbitrarily small scales - often have simple, recursive definitions Mandelbrot Set Romanesco broccoli Coastline of Norway The Cantor Middle-Third Set: $2 = 1 \text{ segment of length } 1 = \frac{1}{3} \text{ or \frac$ To obtain C_{n+1} from C_n , we remove the middle third of each interval in C_n . The Cantor set C is the intersection of all C_n . C is a fractal. C_n consists of 2^n closed intervals of length $\frac{1}{3^n}$. The total length of C_n is $\left(\frac{2}{3}\right)^n$, which approaches 0 as n approaches ∞ . Hence the "length" of C is 0. Another way to state this is that the length of $C_{n+1}=\frac{2}{3}\cdot length$ of C_n . Given this recursive definition, again we have that the length of C_n is , which approaches 0 as n approaches ∞ . The total length <u>removed</u> from the interval [0,1] in the construction of the Cantor set is $$\frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \dots = \sum_{n=0}^{\infty} \frac{2^n}{3^{n+1}} = \sum_{n=0}^{\infty} \frac{1}{3} \left(\frac{2}{3}\right)^n = \frac{\frac{1}{3}}{1 - \frac{2}{3}} = \frac{\frac{1}{3}}{\frac{1}{3}} = \mathbf{1}$$ Hence we have a set from which its entire length has been removed. Yet there are still infinitely many points left in the set. Which points are they? the endpoints of the intervals Note: the sum of an infinite geometric series with common ratio less than 1 in absolute value is equal to $S_{\infty}= rac{a_1}{1-r}$, where a_1 is the first term and r is the common ratio. ### **Koch Curve:** # A segnets A segnets Its segnes Its segnes A segnets ### **Koch Snowflake:** ### **Fractal Dimension:** Recall that points in space are 0-dimensional; lines are 1-dimensional; a square is 2-dimensional; and a cube is 3-dimensional. Fractals don't behave exactly like objects in these integer dimensions. Suppose that an object has the following property: if we scale it down by a factor of S, then the object can be built a constant of S. The following property is the following property of S. The following property is the following propert ## **The Cantor Middle-Third Set:** Suppose that an object has the following property: if we scale it down by a factor of S, then the object can be built from N scaled-down versions of itself. $$d = \frac{\log N}{\log S} = \underline{\text{fractal dimension}}$$ Ex Cantor Set $$S=3$$, $N=2$, $d=\frac{\log 2}{\log 3} \approx 0.63$ ### **Koch Curve:** $$S=3$$, $N=4$, $d= rac{\log 4}{\log 3}pprox 1.62$ vismath - fractals January 15, 2014